首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47245篇
  免费   5743篇
  国内免费   2201篇
电工技术   1316篇
技术理论   9篇
综合类   3127篇
化学工业   17677篇
金属工艺   2910篇
机械仪表   1110篇
建筑科学   2781篇
矿业工程   876篇
能源动力   2412篇
轻工业   2682篇
水利工程   362篇
石油天然气   2168篇
武器工业   175篇
无线电   2476篇
一般工业技术   9151篇
冶金工业   2709篇
原子能技术   374篇
自动化技术   2874篇
  2024年   149篇
  2023年   1064篇
  2022年   1400篇
  2021年   1707篇
  2020年   1793篇
  2019年   1678篇
  2018年   1601篇
  2017年   1794篇
  2016年   1917篇
  2015年   1826篇
  2014年   2717篇
  2013年   2936篇
  2012年   3430篇
  2011年   3640篇
  2010年   2828篇
  2009年   2916篇
  2008年   2423篇
  2007年   2940篇
  2006年   2909篇
  2005年   2384篇
  2004年   2051篇
  2003年   1851篇
  2002年   1426篇
  2001年   1054篇
  2000年   941篇
  1999年   705篇
  1998年   626篇
  1997年   429篇
  1996年   359篇
  1995年   300篇
  1994年   284篇
  1993年   199篇
  1992年   171篇
  1991年   157篇
  1990年   128篇
  1989年   89篇
  1988年   47篇
  1987年   54篇
  1986年   32篇
  1985年   59篇
  1984年   47篇
  1983年   47篇
  1982年   25篇
  1981年   5篇
  1980年   14篇
  1977年   3篇
  1976年   4篇
  1963年   1篇
  1959年   5篇
  1951年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In the last few decades, global warming, environmental pollution, and an energy shortage of fossil fuel may cause a severe economic crisis and health threats. Storage, conversion, and application of regenerable and dispersive energy would be a promising solution to release this crisis. The development of porous carbon materials from regenerated biomass are competent methods to store energy with high performance and limited environmental damages. In this regard, bio-carbon with abundant surface functional groups and an easily tunable three-dimensional porous structure may be a potential candidate as a sustainable and green carbon material. Up to now, although some literature has screened the biomass source, reaction temperature, and activator dosage during thermochemical synthesis, a comprehensive evaluation and a detailed discussion of the relationship between raw materials, preparation methods, and the structural and chemical properties of carbon materials are still lacking. Hence, in this review, we first assess the recent advancements in carbonization and activation process of biomass with different compositions and the activity performance in various energy storage applications including supercapacitors, lithium-ion batteries, and hydrogen storage, highlighting the mechanisms and open questions in current energy society. After that, the connections between preparation methods and porous carbon properties including specific surface area, pore volume, and surface chemistry are reviewed in detail. Importantly, we discuss the relationship between the pore structure of prepared porous carbon with surface functional groups, and the energy storage performance in various energy storage fields for different biomass sources and thermal conversion methods. Finally, the conclusion and prospective are concluded to give an outlook for the development of biomass carbon materials, and energy storage applications technologies. This review demonstrates significant potentials for energy applications of biomass materials, and it is expected to inspire new discoveries to promote practical applications of biomass materials in more energy storage and conversion fields.  相似文献   
2.
《Ceramics International》2021,47(23):33070-33077
In this work, a number of precursors with 1:1 silicon to carbon atoms ratio and various carbon atom distributions were synthesized and pyrolyzed in order to obtain silicon oxycarbide based materials. The different carbon atom distributions were obtained using both simple monomers with only one silicon atom, as well as large monomers containing either four or sixteen silicon atoms with predefined carbon atom positions. The silicon oxycarbide based materials were investigated using IR, XRD, 29Si MAS NMR and elemental analysis after annealing at various temperatures, as well as TG. The research shows that carbon atom distribution has great impact on the structure of final material and can be used to tailor the material for its projected uses.  相似文献   
3.
With a growing interest in hydrogen as energy carrier, the efficient purification of hydrogen from gaseous mixtures is very important. This paper addresses the separation of hydrogen using Carbon Molecular Sieves Membranes (CMSM), which show an attractive combination of high permeability, selectivity and stability. Supported CMSM containing various amounts of aluminium have been prepared from novolac and aluminium acetyl acetonate (Al(acac)3) as carbon and alumina precursors. The thickness of the CMSM layers depend on the content of Al(acac)3 in the dipping solution, which also has influence in the pore size and pore size distribution of the membranes. The permeation properties of the membranes against the Al content in the membrane follows a volcano shape, where the membrane containing 4 wt (%) of Al(acac)3 has the best properties and was stable during 720 h for hydrogen at 150 °C and 6 bar pressure difference. All the CMSM have permeation properties well above the Robeson Upper limit.  相似文献   
4.
This study presents the development and characterization of PVDF-conjugated polymer nanofiber-based systems. Five different conducting polymers (CPs) were synthesized successfully and used to create the nanofiber systems. The CPs used are polyaniline (PANI), polypyrrole (PPY), polyindole (PIN), polyanthranilic acid (PANA), and polycarbazole (PCZ). Nanofiber systems were produced utilizing the Forcespinning® technique. The nanofiber systems were developed by mechanical stretching. No electrical field or post-process poling was used in the nanofiber systems. The morphology, structure, electrochemical and piezoelectric performance was characterized. All of the nanofiber PVDF/CP systems displayed higher piezoelectric performance than the fine fiber PVDF systems. The PVDF/PPY nanofiber system displays the highest piezoelectric performance of 15.56 V. The piezoelectric performance of the PVDF/CP nanofiber systems favors potential for an attractive source of energy where highly flexible membranes could be used in power actuators, sensors and portable, and wireless devices to mention some.  相似文献   
5.
In this work, density functional theory (DFT) calculations were used to investigate the mechanism of carbon corrosion on nitrogen-doped carbon support. Free energy diagrams were generated based on three proposed reaction pathways to evaluate corrosion mechanisms. The most energetically preferred mechanism on nitrogen-doped carbon was determined. The results show that the step of water dissociation to form #OH was the rate-determining step for gra-G-1N (graphene doped with graphitic N) and pyrr-G-1N (graphene doped with pyrrolic N). As for graphene doped with pyridinic N, the step of C#OC#O formation was critical. It was found that the control of nitrogen concentration was necessary for precisely designing optimized carbon materials. Abundance of nitrogen moieties aggravated the carbon corrosion. When the high potential was applied, specific types of graphitic N and pyridinic N were found to be favorable carbon modifications to improve carbon corrosion resistance. Moreover, the solvent effect was also investigated. The results provide theoretical insights and design guidelines to improve corrosion resistance in carbon support through material modification by inhibiting the adsorption of surface oxides (OH, O, and OOH).  相似文献   
6.
《Ceramics International》2021,47(21):29949-29959
High carbon footprint of cement production is the major drawback of plain cement concrete resulting in environmental pollution. Geopolymer composites paste can be effectively used as an alternative to Portland cement in the construction industry for a sustainable environment. The demand for high-performance composites and sustainable construction is increasing day by day. Therefore, the present experimental program has endeavored to investigate the mechanical performance of basalt fiber-reinforced fly ash-based geopolymer pastes with various contents of nano CaCO3. The content of basalt fibers was fixed at 2% by weight for all specimens while the studied contents of nano CaCO3 were 0%, 1%, 2%, and 3%, respectively. The compressive strength, compressive stress-strain response, flexural strength, bending stress-strain response, elastic modulus, toughness modulus, toughness indices, fracture toughness, impact strength, hardness, and microstructural analysis of all four geopolymer composite pastes with varying contents of nano CaCO3 using scanning electron microscopy (SEM) were evaluated. The results revealed that the use of 3% nano CaCO3 in basalt fiber-reinforced geopolymer paste presented the highest values of compressive strength and hardness while the use of 2% nano CaCO3 showed the highest values of flexural strength, impact strength, and fracture toughness of composite paste. The SEM results indicated that the addition of nano CaCO3 improved the microstructure and provided a denser geopolymer paste by refining the interfacial zones and accelerating the geopolymerization reaction.  相似文献   
7.
8.
孙咸 《焊管》2022,45(5):22-35
综述了铁素体与铁素体异种金属焊缝(dissimilar metal welds,DMWs)接头界面组织及其影响。结果表明,在焊后热处理或运行温度下的铁素体钢DMWs接头的不均匀界面组织中,通常会形成脱碳层和增碳层。在铁素体钢DMWs焊接接头界面组织影响因素中,焊缝金属的化学成分有重要影响;焊后热处理规范(温度和时间)、工作温度下运行时间的影响较为突出;焊接工艺参数的影响亦不可忽略。异种钢接头界面处近缝区裂纹的产生,以及接头的蠕变强度随Larson Miller 参数增大而下降等不利影响,均为异种钢界面碳迁移行为所导致。焊缝成分控制法是接头界面组织控制或改善的必要条件,而脱碳层部位转移法能有效防止裂纹发生,亦是接头安全运行的重要工艺措施之一。  相似文献   
9.
《Ceramics International》2021,47(21):30298-30309
The novel Al4O4C–(Al2OC)1-x(AlN)x–Zr2Al3C4–Al2O3 refractories with ultra-low carbon content have been successfully prepared by constructing the core-shell structure of aluminum at 1300–1700°C in nitrogen. The phase composition, microstructure, and properties of the novel refractories are deeply investigated. The cracking temperature on the core-shell structure of aluminum is further explored and the reaction mechanism of Zr2Al3C4 has also added explanation. The results show that the novel refractories have excellent physical properties and cannot be corroded by molten iron. There exist two different Al2OC solid solutions in the novel refractories, Al2OC-rich (Al2OC)1-x(AlN)x and AlN-rich (Al2OC)1-x(AlN)x. The temperatures affect their relative content. When temperatures are less than 1600°C, the relative content of Al2OC-rich (Al2OC)1-x(AlN)x is more than that of AlN-rich (Al2OC)1-x(AlN)x. When temperatures are above 1700°C, the relative content of AlN-rich (Al2OC)1-x(AlN)x is more than that of Al2OC-rich (Al2OC)1-x(AlN)x. The core-shell structure of aluminum fully ruptures at about 1200°C. Zr2Al3C4 begins to form at about 1000°C and generates in large at 1200°C.  相似文献   
10.
In the context of the high-level radioactive waste disposal CIGEO, the corrosion rate due to microbially influenced corrosion (MIC) has to be evaluated. In France, it is envisaged to dispose of high- and intermediate-level long-lived radioactive waste at a depth of 500 m in a deep geological disposal, drilled in the Callovo-Oxfordian claystone (Cox) formation. To do so, a carbon steel casing will be inserted inside disposal cells, which are horizontal tunnels drilled in the Cox. A specific cement grout will be injected between the carbon steel casing and the claystone. A study was conducted to evaluate the possibility of MIC on carbon steel in the foreseeable high radioactive waste disposal. The corrosiveness of various environments was investigated at 50°C and 80°C with or without microorganisms enriched from samples of Andra's underground research laboratory. The monitoring of corrosion during the experiments was ensured using gravimetric method and real-time corrosion monitoring using sensors based on the measurements of the electrical resistance. The corrosion data were completed with microbiological analyses including cultural and molecular characterizations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号